Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th **10 Continuous Random Variables**

Office Hours:

BKD, 6th floor of Sirindhralai building

Tuesday Thursday

9:00-10:00 Wednesday 14:20-15:20 9:00-10:00

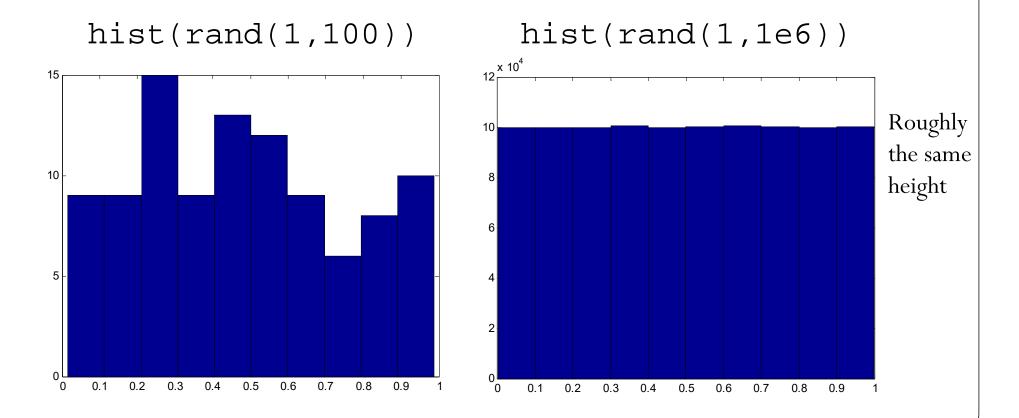
rand function

- Generate an array of uniformly distributed pseudorandom numbers.
 - The pseudorandom values are drawn from the standard uniform distribution on the open interval (0,1).
- rand returns a scalar.
- rand(m,n) or rand([m,n]) returns an *m*-by-*n* matrix.
 - rand(n) returns an *n*-by-*n* matrix

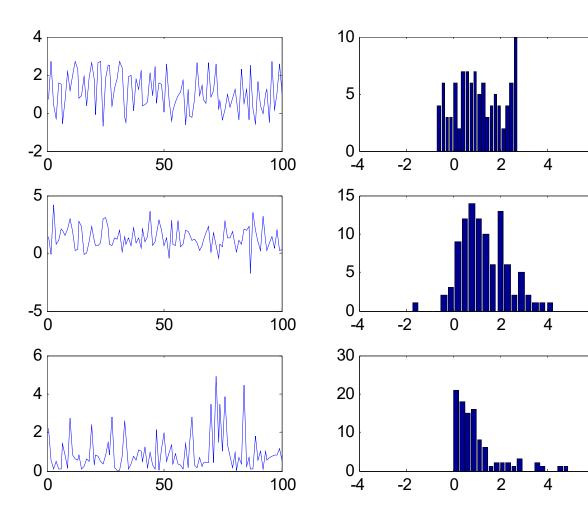
>> rand	
ans =	
0.3816	
>> rand(10,2)	
ans =	
0.7655	0.6551
0.7952	0.1626
0.1869	0.1190
0.4898	0.4984
0.4456	0.9597
0.6463	0.3404
0.7094	0.5853
0.7547	0.2238
0.2760	0.7513
0.6797	0.2551

rand function: Histogram

- The generation is **unbiased** in the sense that "any number in the range is **as likely to occur** as another number."
- Histogram is flat over the interval (0,1).



Three Important Continuous RVs



Mean = 1Std = 1N = 100

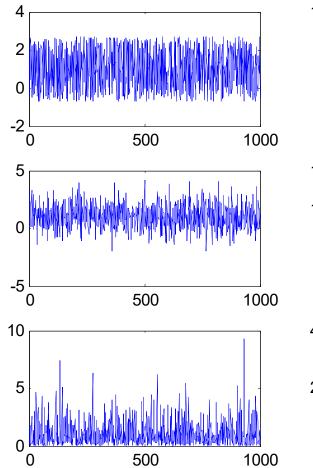
6

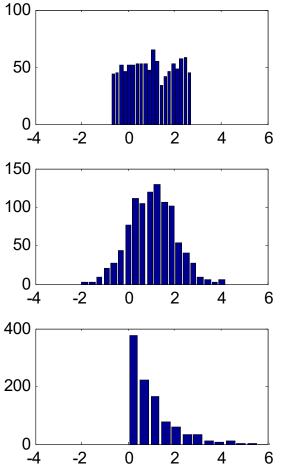
6

6

[IntroThreeContinuousRV.m]

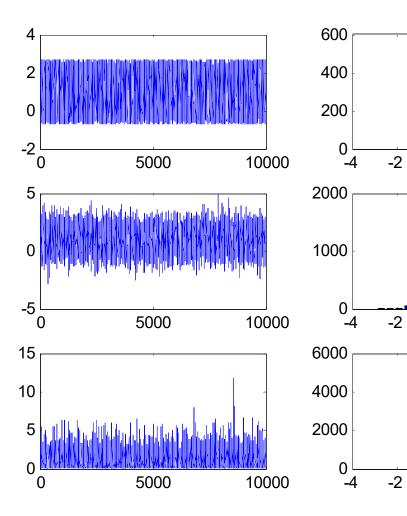
Three Important Continuous RVs

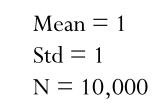




Mean = 1 Std = 1 N = 1,000

Three Important Continuous RVs





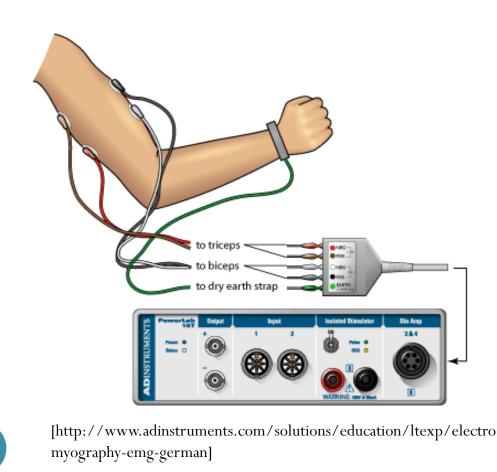
Johann Carl Friedrich Gauss

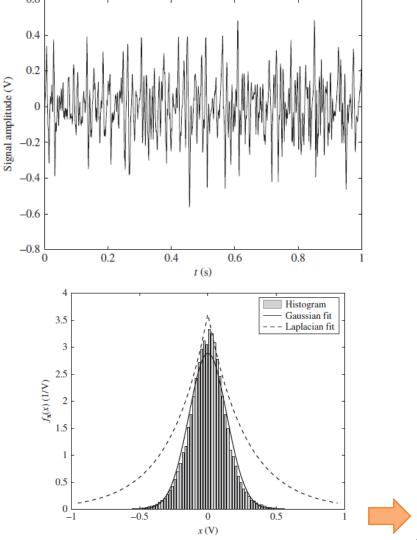
German 10-Deutsche Mark Banknote (1993; discontinued)

- 1777 1855
- A German mathematician

Ex. Muscle Activity

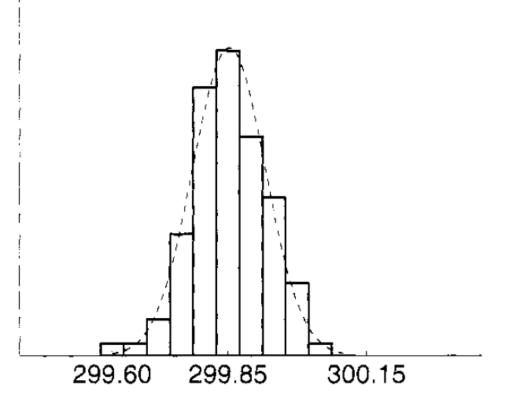
• Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).





Ex. Measuring the speed of light

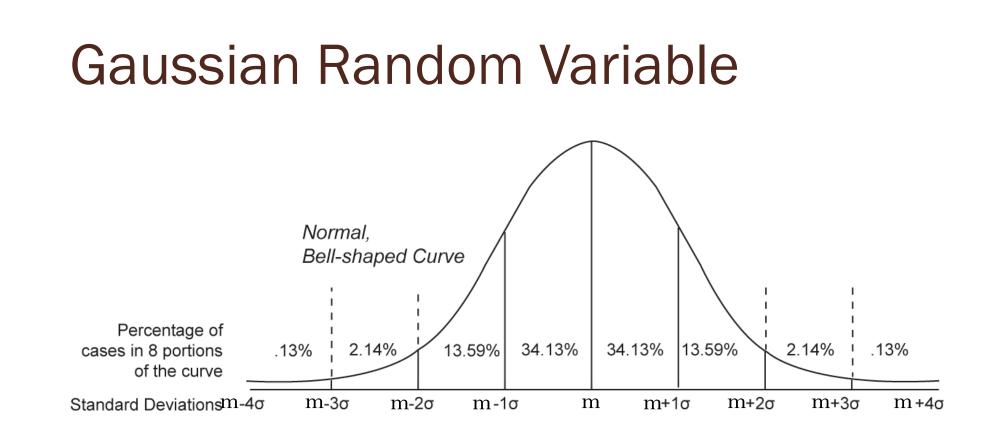
100 measurements of the speed of light (×1,000 km/second), conducted by Albert Abraham Michelson in 1879.



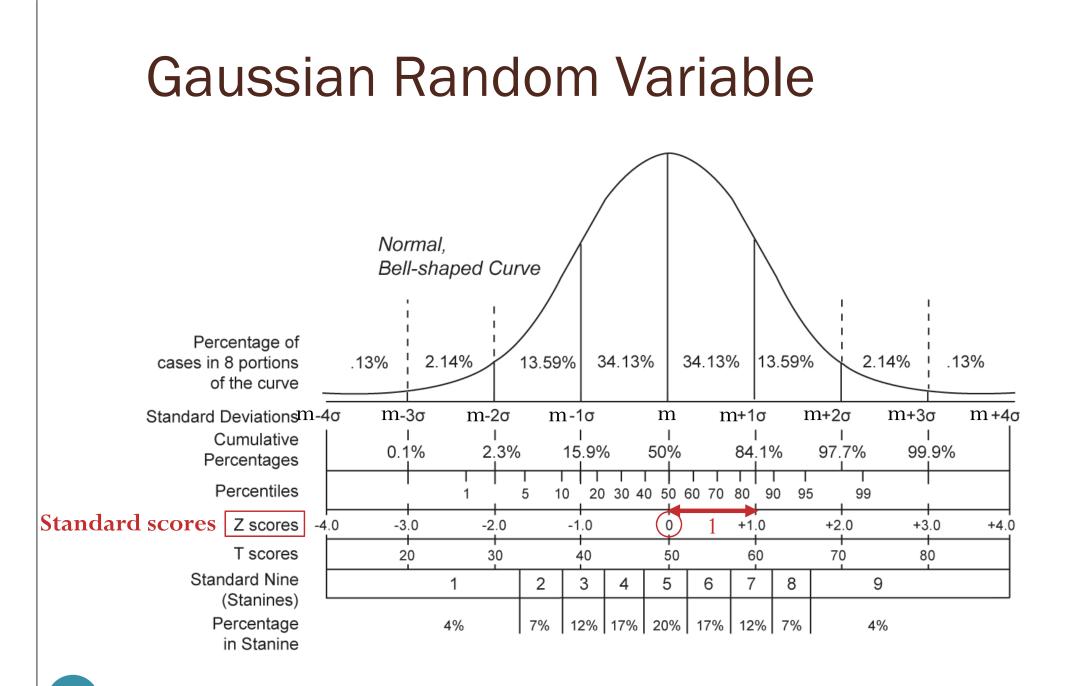
Expected Value and Variance

"Proof" by MATLAB's symbolic calculation

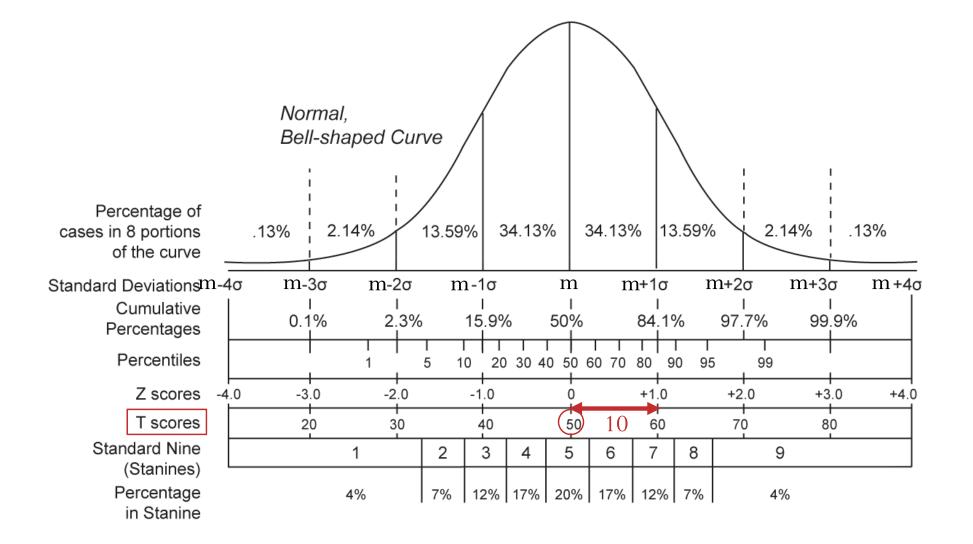
>> syms x >> syms m real >> syms sigma positive >> int(1/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf) ans = 1 >> EX = $int(x/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)), x, -inf, inf)$ EX =m >> EX2 = $int(x^2/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)), x, -inf, inf)$ EX2 =-(2^(1/2)*(limit(- x*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) - m*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) -(2^(1/2)*pi^(1/2)*sigma*erfi((2^(1/2)*(x - m)*i)/(2*sigma))*(m^2 + sigma^2)*i)/2, x == -Inf) - limit(- x*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) x²/(2*sigma²)) - m*sigma²*exp((x*m)/sigma² - m²/(2*sigma²) - x²/(2*sigma²)) - (2^(1/2)*pi^(1/2)*sigma*erfi((2^(1/2)*(x - m)*i)/(2*sigma))*(m² + sigma^2)*i)/2, x == Inf)))/(2*pi^(1/2)*sigma) >> EX2 = simplify(EX2) EX2 = $m^2 + sigma^2$ >> VarX = EX2 - (EX)^2 VarX =sigma^2



[Wikipedia.org]

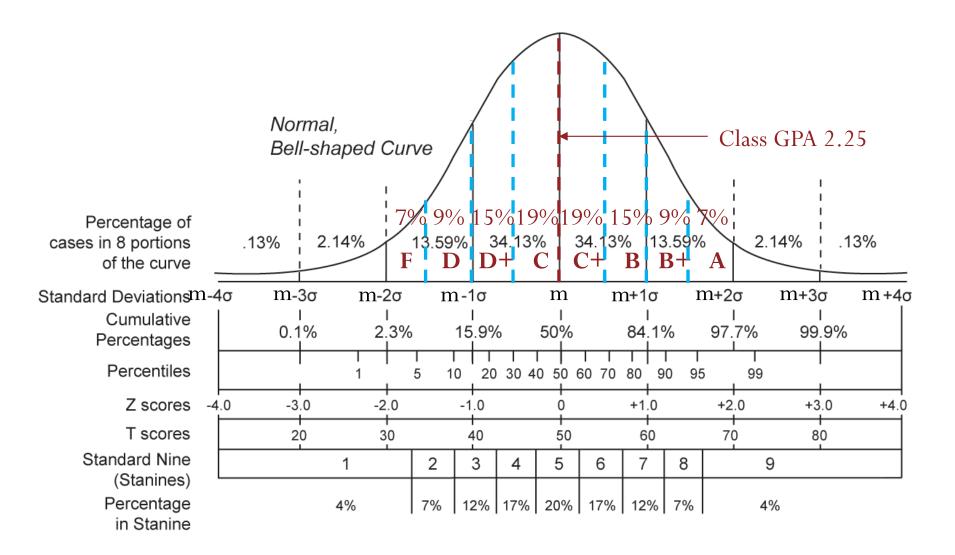


Gaussian Random Variable



[Wikipedia.org]

SIIT Grading Scheme (Option 3)



[Wikipedia.org]

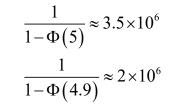
From the News

Higgs boson-like particle discovery claimed at LHC

COMMENTS (1665)

By Paul Rincon

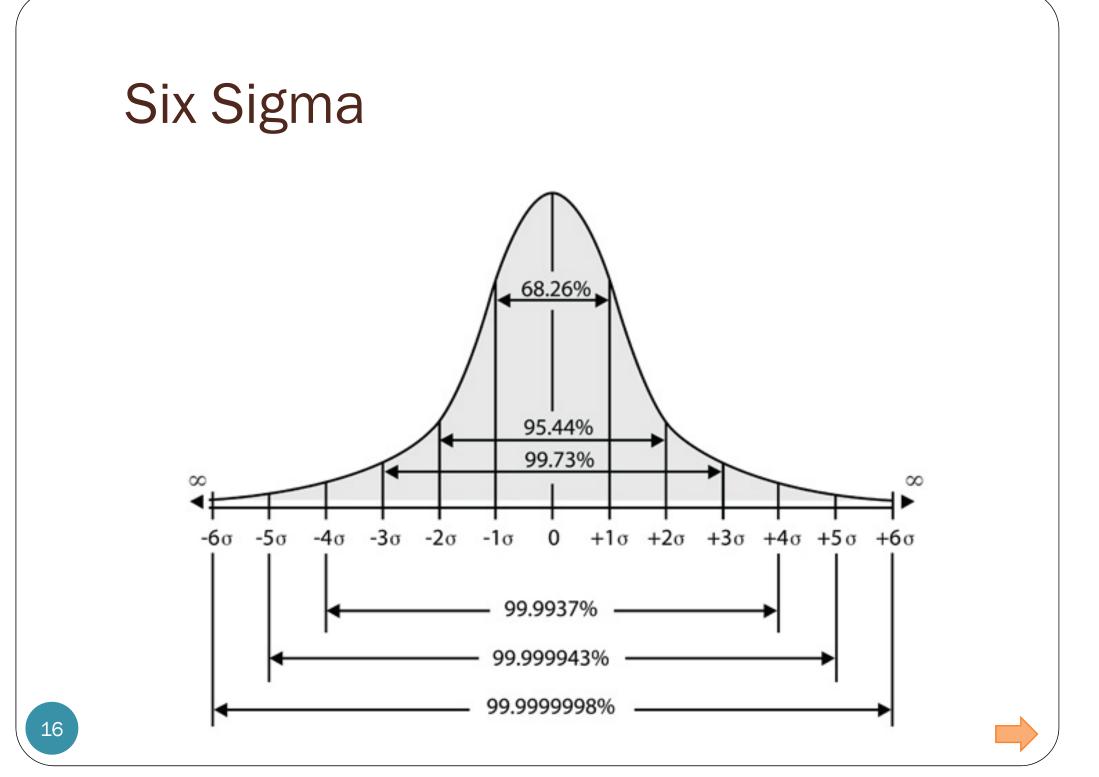
4 July 2012



Particle physics has an accepted definition for a **discovery**: a "fivesigma" (or five standard-deviation) level of certainty **The number of sigmas measures** how unlikely it is to get a certain experimental result as a matter of chance rather than due to a real effect

They claimed that by combining two data sets, they had attained a confidence level just at the "five-sigma" point about a **one-in-3.5 million chance** that the signal they see would appear if there were no Higgs particle.

However, a full combination of the CMS data brings that number just back to **4.9 sigma** - a one-in-two million chance.



Six Sigma

- If you **manufacture** something that has a normal distribution and get an observation outside six σ of μ , you have either seen something extremely unlikely or there is something wrong with your manufacturing process. You'd better look it over.
- This approach is an example of **statistical quality control**, which has been used extensively and saved companies a lot of money in the last couple of decades.
- The term **Six Sigma**, a registered trademark of **Motorola**, has evolved to denote a methodology to monitor, control, and improve products and processes.
- There are Six Sigma societies, institutes, and conferences.
- Whatever Six Sigma has grown into, it all started with considerations regarding the normal distribution.

Six Sig	na $\int_{-6\sigma} -5\sigma -4\sigma -3\sigma -2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Range around μ	Percentage of products in conformance	Percentage of nonconforming products
around μ	in conformance	nonconforming products
around μ -1 σ to +1 σ	in conformance 68.26	nonconforming products 31.74
around μ	in conformance	nonconforming products
around μ -1 σ to +1 σ -2 σ to +2 σ	in conformance 68.26 95.46	nonconforming products 31.74 4.54
around μ -1σ to $+1\sigma$ -2σ to $+2\sigma$ -3σ to $+3\sigma$	in conformance 68.26 95.46 99.73	nonconforming products 31.74 4.54 0.27

More on Gaussian RVs...

volume 150

HANDBOOK OF THE NORMAL DISTRIBUTION

CO STATISTICS: textbooks and monographs

Second Edition, Revised and Expanded

JAGDISH K. PATEL CAMPBELL B. READ

Probability Distributions Involving Gaussian Random Variables

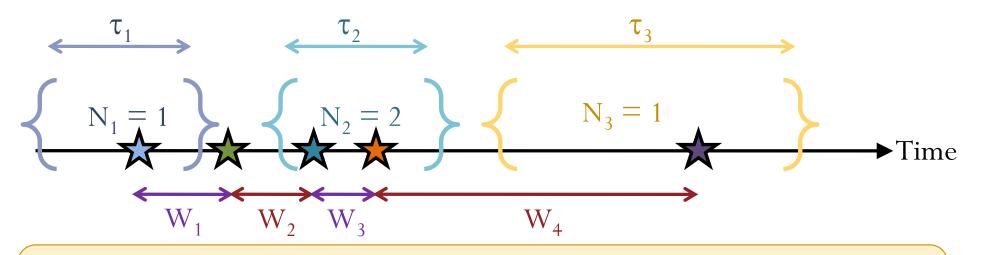
A Handbook for Engineers, Scientists and Mathematicians

Marvin K. Simon

Deringer

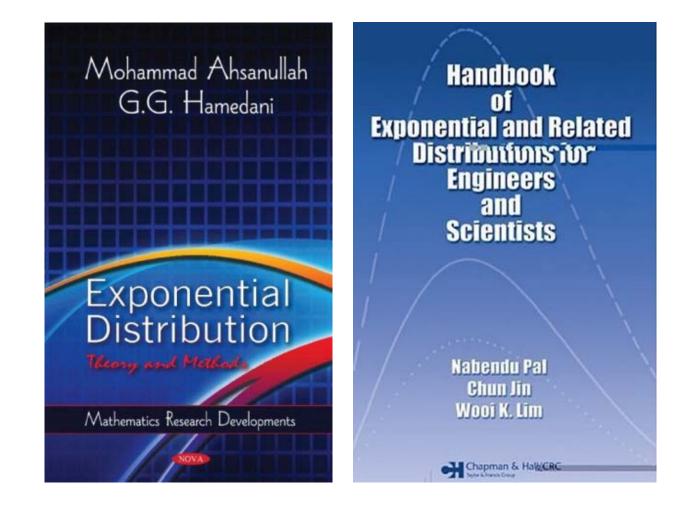
Poisson Process

The number of arrivals N_1, N_2, N_3, \ldots during non-overlapping time intervals are independent Poisson random variables with mean = $\lambda \times$ the length of the corresponding interval.



The lengths of time between adjacent arrivals W_1, W_2, W_3, \ldots are i.i.d. exponential random variables with mean $1/\lambda$.

More on Exponential RV ...



Review: Function of discrete RV

Example 9.16. Let

$$p_X(x) = \begin{cases} \underbrace{\frac{1}{2}x^2}, & x = \pm 1, \pm 2\\ 0, & \text{otherwise} \end{cases}$$

and

22

$$Y = X^4$$

Find $p_Y(y)$ and then calculate $\mathbb{E}Y := \sum_{y} y p_y (y)$

Step 1: Find c

$$\sum_{x} p_{x}(x) = 1$$
Note that $Y = X^{4}$

$$P_{Y}(Y) = \begin{cases} 1/5, & y = 1, \\ 4/5, & y = 1L, \\ 0, & \text{otherwise.} \end{cases}$$

$$\frac{1}{c} \left(1^{\frac{3}{2}} + 2^{\frac{3}{2}} + (-1)^{\frac{3}{2}} + (-2)^{\frac{3}{2}}\right) = 1$$

$$p_{x}(x) = x \qquad Y$$

$$\frac{1}{1/10} \qquad 1 \qquad 1^{\frac{4}{2}} = 1$$

$$C = 10. \qquad 1/10 \qquad -1 \qquad (-1)^{\frac{4}{2}} = 1$$

$$\frac{4/40}{2} \qquad 2 \qquad 2^{\frac{4}{2}} = 1L$$

$$\frac{1}{5} \qquad + \qquad 16 \times \frac{4}{5}$$

$$P[Y = 1] = P[X = 1] + P[X = -1] = \frac{3}{10} = \frac{1}{5} \qquad = \frac{65}{5} = 13$$

$$P[Y = 1L] = P[X = 2] + P[X = -2] = \frac{8}{10} = \frac{4}{5}$$

References

- From Discrete to Continuous Random Variables: [Y&G] Sections 3.0 to 3.1
- PDF and CDF: [Y&G] Sections 3.1 to 3.2
- Expectation and Variance: [Y&G] Section 3.3
- Families of Continuous Random Variables: [Y&G] Sections
 3.4 to 3.5
- SISO: [Y&G] Section 3.7; [Z&T] Section 5.2.5